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Abstract. The electronic structure of LaNi5 and its hydride LaNi5H7 are obtained using the self-consistent
cluster-embedding calculation method. The Fermi level of LaNi5H7 is 5.172 eV higher than that of LaNi5.
In both materials, the La 5d electrons locate nearby the Fermi levels, and make only a small contribution
to the density of states (DOS) of the valence bands. There is no significant charge transfer from La to Ni
in LaNi5. But for LaNi5H7, there is a charge transfer of 1.16 electrons from La to H, and H atoms are
combined mainly with Ni to form hybridized orbitals in the energy regions far below the Fermi level. An
explanation of hydrogenation of LaNi5 is proposed: It is easy for hydrogens to take off some localized La
5d electrons near the Fermi level, and combine with Ni to form hybridized orbitals in lower energy regions.
This process is therefore in favor of energy, and forces a lattice expansion until the Fermi level rises to
zero.

PACS. 71.20.-b Electron density of states and band structure of crystalline solids – 71.28.+d Narrow-band
systems; intermediate-valence solids – 71.15.-m Methods of electronic structure calculations

1 Introduction

The hydrogen storage material LaNi5 has attracted con-
siderable attention [1]. It is generally believed that two
factors, the size factor and the electronic factor, control a
metal’s solvent power for hydrogen. The former has been
stressed by Lundin et al. [2]. The latter is related to the
bonding of hydrogen to the metal lattice. Hydrogen is ab-
sorbed dissociatively. The cleavage of the hydrogen bond
is endothermal to the extent of about 4.45 eV/H2. So there
must be a strong exothermal interaction with the lattice
as hydrogen enters to compensate for this energy. In or-
der to understand the hydrogenation, first, we must know
the electronic structure. Due in part to the complexity
of the crystal structure and the controversy concerning
the location of hydrogen in LaNi5, as we know, there are
only two calculations for LaNi5 [3,4] and one calculation
for LaNi5H7 [4]. The APW (augmented plane wave) band
structure calculation, performed by Malik et al. [3], does
not contain the correlation potential, and its exchange po-
tential is of the Slater Xα type with α = 1. For the cal-
culations of Gupta [4], the Hamiltonian includes only the
s and d functions at the transition metal site, and it is
not clear whether the calculations are spin-polarized. Up
to today, the interaction of hydrogen with LaNi5 lattice
has not been elucidated in any more than the most gen-
eral terms; such as, for example, to assert that there is a
strong La-H affinity in the LaNi5 hydride, etc.
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The self-consistent cluster-embedding (SCCE) calcu-
lation method is developed by the author [5,6] based on
density functional theory, and is a first-principle method.
Unlike the band structure calculation and free-cluster cal-
culation, the SCCE calculation uses a set of localized
non-interacting electrons to describe systems. It has been
successfully applied to transition-metal monoxides NiO,
CoO, pure Ni and hydrogen-decorated vacancies in Ni
[5,7,8]. Recently, the electronic structure of a biological
macromolecule, the trypsin inhibitor from squash seeds
(CMTI-I), is obtained by the SCCE calculations [9]. In
this paper, the electronic structures of LaNi5 and LaNi5H7

are obtained by first-principle, all electron, full potential
calculations using the SCCE method. A new explanation
of hydrogenation of LaNi5 is proposed. In Section 2, we
outline briefly the theoretical method. The results are pre-
sented in Sections 3 and 4, and summarized in Section 5.

2 Theoretical model

Although the self-consistent cluster-embedding (SCCE)
calculation method has been described in detail else-
where [6,9], we provide a brief overview for completeness.

In the density functional theory (DFT) [10], Kohn and
Sham assume that a non-interacting electron system has
the same ground-state charge density as the real inter-
acting system [11]. Thus the energy function of a system
containing N electrons and M fixed nuclei can be written
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as (no relativistic effect is included; atomic units are used
throughout this paper: e2 = 2, ~ = 1, 2me = 1):

Ev[ρ] = Tni[ρ] + Exc[ρ] +
∫ ∫

ρ(r)ρ(r′)
|r − r′| drdr′

− 2
M∑

j=1

∫
ρ(r)Zj

|r − Rj|dr +
M∑

i6=j

ZiZj

|Ri − Rj| , (1)

where Tni[ρ] is the kinetic energy of a non-interacting
electron system. In the local spin density approximation
(LSDA), the exchange-correlation energy Exc[ρ] is

Exc[ρ] =
∫

ρ(r)εxc(ρup(r), ρdown(r))dr. (2)

Each non-interacting electron can now be represented by
a stationary state one-electron wave function φσ

n(r). The
total ρ(r) and Tni[ρ] are the sums of the electronic den-
sity and kinetic energy of each non-interacting electron,
respectively.

ρ(r) = ρup(r) + ρdn(r) =∑
occupied l

|φup
l (r)|2 +

∑
occupied m

|φdn
m (r)|2 (3)

Tni[ρ] =
∑

occupied l

∫
φup∗

l (r)(−∇2)φup
l (r)dr

+
∑

occupied m

∫
φdn∗

m (r)(−∇2)φdn
m (r)dr. (4)

Using formulae (2, 3) and (4), the single-electron
Schrödinger equation, i.e., the well-known Kohn-Sham
equation [11], can be obtained by the variation of func-
tion (1) with respect to φσ∗

n (r) under the conservation
rule

∫
ρ(r)dr = N :

{
−∇2 + 2

∫
ρ(r′)
|r − r′|dr

′ − 2
M∑

i=1

Zi

|r − Ri| + V σ
xc(r)

}

× φσ
n(r) = εσ

nφσ
n(r). (5)

The variation of equation (1) requires no restriction on
the trial one-electron wave functions φσ

n(r). In the actual
calculation of equation (5), however, it is impossible to
have the φσ

n(r) unrestricted. What we can do is to use two
kinds of non-interacting electrons to describe the real sys-
tem approximately. They satisfy different boundary con-
ditions, and correspond to different calculation methods.

2.1 Spread non-interacting electron model

Each one-electron wave function φσ
n(r) is assumed to

spread over the whole region occupied by the system. Un-
der this model, equation (5) can be used for free-cluster
calculations with the natural finite boundary condition

φσ
n(r)

|r|→∞−→ 0, or for band structure calculations with pe-
riodic boundary condition.

2.2 Localized non-interacting electron model

Each one-electron wave function φσ
n(r) is assumed to be

distributed in a part of the region occupied by the system.
Under this model, equation (5) is used for self-consistent
cluster-embedding (SCCE) calculation [6]: The N φσ

n(r)
are divided into several groups. The φσ

n(r) in different
groups will satisfy different special boundary conditions,
and localize in different regions. The details are as follows.

The system can be divided into k embedded-clusters.
For each embedded-cluster (whose electronic density is
represented by ρ1(r)), the rest of the system is treated
as an environment with electronic density ρ2(r) which has
a small overlap with the ρ1(r). Because all N φσ

n(r) are
localized, we have (N = N1 + N2):

ρ(r) =
N∑

occupied n σ

|φσ
n(r)|2

=
N1∑

occupied n1 σ

|φσ
n1

(r)|2 +
N2∑

occupied n2 σ

|φσ
n2

(r)|2

≡ ρ1(r) + ρ2(r). (3b)

Tni[ρ] = Tni[ρ1 + ρ2] =
N∑

occupied n σ

∫
φσ∗

n (r)(−∇2)φσ
n(r)dr

=
N1∑

occupied n1 σ

∫
φσ∗

n1
(r)(−∇2)φσ

n1
(r)dr

+
N2∑

occupied n2 σ

∫
φσ∗

n2
(r)(−∇2)φσ

n2
(r)dr

≡ Tni[ρ1] + Tni[ρ2]. (4b)

A zero-value term
∫

ρ1(r)Vordr is added to the right
side of formula (1). For fixed ρ2(r), using formulae (2),
(3b) and (4b), the variational principle now leads to the
basic equation of the SCCE method [6]:

{
−∇2 + 2

∫
ρ1(r′) + ρ2(r′)

|r − r′| dr′ − 2
M∑

i=1

Zi

|r − Ri|

+ V σ
xc(r) + Vor(r)

}
φσ

n(r) = εσ
nφσ

n(r), (5b)

where the φσ
n(r) represent only the non-interacting elec-

trons localized in and around the embedded-cluster. For a
real finite system, by calculating all k embedded-clusters
one by one, equation (5b) gives a complete set of one-
electron eigenfunctions of the whole system which makes
the total energy in formula (1) a minimum.

The Vor(r) is defined as

Vor(r) =




2
M2∑
j=1

Zj

|r−Rj| if r is in the core regions of
surrounding atoms

0 otherwise,
(6)
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where the M2 is the number of surrounding atoms. In the
calculations, the Vor(r) cancels the nuclear Coulomb po-
tential in the core regions of all surrounding atoms. The
cluster-electrons will only feel an electron-electron positive
Coulomb potential in these regions and be forced out. So
the φσ

n(r) in equation (5b) satisfy a special boundary con-
dition caused by the Vor(r):

φσ
n(r)|r is in the core regions of surrounding atoms = 0. (7)

The physical reasons for the boundary condition (7) are
given in reference [6]. In addition, there is a special finite
boundary condition for φσ

n(r) because of its locality:

φσ
n(r)

r gradually go away from the embedded cluster−→ 0. (8)

It is achieved by using pre-localized wave functions, i.e.,
each φσ

n(r) is expanded into a set of localized basis func-
tions which are not zero only in and around the embedded
cluster region.

Now we show that equation (5b) is just the Kohn-Sham
equation (5) with special boundary conditions. Appar-
ently, the equation (5b) is exactly the same as the
Kohn-Sham equation (5) except for the “orthogonality
constraint” Vor(r). Look at the formula (6), it is easy to see
that as long as the boundary condition (7) is satisfied, we
have

∫
ρ1(r)Vor(r)dr = 0 . So the Vor(r) in equation (5b)

has no contribution to total energy, and the SCCE calcu-
lation is valid according to the DFT. The only effect of
the Vor(r) is to cause the special boundary condition (7).
In fact, what we have done is transform the boundary
condition (7) into an equivalent potential Vor(r) in equa-
tion (5b). So equation (5b) is just the Kohn-Sham equa-
tion (5) with the special boundary condition (7) and (8).
Note, the boundary conditions (7) and (8) are related to
the position and surrounding atoms of the embedded clus-
ter. The two boundary conditions are different for differ-
ent embedded clusters which have different positions and
surrounding atoms. In fact, we use the same Hamiltonian
as the Kohn-Sham equation (5), but different boundary
conditions to solve k sets of φσ

n(r), localized in different
embedded cluster regions. Because the expansion bases of
φσ

n(r), and the equivalent potential Vor(r), are different for
different embedded clusters, we may say that the effective
Hamiltonians of k sets of φσ

n(r) are different.
There are two technique explanations for the actual

SCCE calculation.
(A) The optimum values of core radii of surrounding
atoms are determined according to two criteria: (i) there
is no collapse disaster; (ii) the total cluster-electrons re-
maining in the surrounding core regions are minimum. In
general, the boundary condition (7) can be satisfied with
high precision, and it is found that the results are not
sensitive to the core radii if they are around the optimum
values.
(B) For a periodic crystal, only one embedded-cluster
needs to be calculated self-consistently, while the ρ2(r)
is identical with the periodic extension of ρ1(r). The pe-
riodical crystal potential can be well described by enough
environmental atoms no matter what size the embedded-
cluster is.

Fig. 1. The embedded-cluster of LaNi5

3 Results of LaNi5

LaNi5 crystallizes within the CaCu5 structure with space
group P6/mmm [12]. Figure 1 shows the embedded-cluster
of LaNi5 which is surrounded by 156 atoms to simulate
the α-phase crystal LaNi5. The lattice constants used in
our calculation are ao = 5.023 Å, co = 3.984 Å [13,14].
The original optimized Gaussian bases of Ni and La are
taken [15–18]. Then part of the bases are uncontracted
and several diffuse bases are added. The final basis sets
are: Ni – 10s6p6d which is contracted from 16s10p7d; La
– 14s10p7d which is contracted from 20s16p11d. An iso-
lated lanthanum atom has no 4f electron, and it is ex-
pected that lanthanum may lose electrons in both LaNi5
and LaNi5H7. So only the configuration 4f0 of La is con-
sidered, and no f basis is used. The total number of Gaus-
sian bases of the embedded-cluster LaNi5 is 369. There
are 901419 grid points used for numerical calculation of
Vxc. After several trial calculations, the optimum val-
ues of core radii of surrounding La and Ni atoms are:
RLa = 1.6861 a.u., RNi = 0.7869 a.u. The total num-
ber of cluster electrons remaining in the core regions of
156 surrounding atoms are 0.0005, which shows that the
special boundary condition (7) is well satisfied.

Figure 2 shows the DOS of La-d, Ni-d, Ni-s, Ni-p and
total electrons, where each single level has been broad-
ened by a Gaussian function with a full width at half-
maximum (FWHM) of 1 eV (s electrons), 0.5 eV (p elec-
trons) and 0.3 eV (d electrons), respectively. The contri-
bution of La-s and La-p electrons are negligible.

The results show that the Fermi level EF = −5.125 eV,
falls in a rapidly decreasing portion of the nickel 3d bands
which are not fully filled. Below the Ni 3d bands, there
are two Ni s-d hybridized bands centered at −9.0 eV and
−10.2 eV, respectively. The La-5p electrons locate in much
lower energy regions, −21.935 eV to −25.824 eV, so they
are not valence electrons. The valence bands, mainly con-
tributed by nickel 3d electrons, contain Ni-4s (6.66%), Ni-
3p (3.77%) and La-5d (4.49%) electrons. The full width at
half maximum (FWHM) of the nickel 3d bands is about
3.0 eV. Our calculations agree with the photoemission
data [19,20] which show the occupied bands of LaNi5 and
a FWHM of 3.0 eV of nickel 3d bands. Besides, the data
in Figure 2 can be used to calculate the electronic specific-
heat coefficient γ = π2k2

B

3 N(EF ). N(EF ) is calculated to
be 13.7× 6.022× 1023 (eV)−1 (mole LaNi5)−1. From this,
γ is evaluated to be 3.23 × 10−2 J (mole LaNi5)−1 K−2.
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(a) (b)

(c) (d)

(e)

Fig. 2. Density of states of classified electrons of LaNi5. Units of the DOS are states of per electron-volt per LaNi5 cell.
Dashed line: spin-up electrons. Solid line: spin-down electrons. (a) La-d electrons; (b) Ni-d electrons; (c) Ni-s electrons; (d) Ni-p
electrons; (e) Total, the solid line including both spin-up and spin-down electrons.
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This is to be compared with the experimental values in
J mole−1 K−2 of 3.43×10−2 by Nasu et al. [21], 3.65×10−2

by Takeshita et al. [22], and 4.26 × 10−2 by Ohlendorf
et al. [23]. The agreement with the SCCE calculations is
seen to be quite good. Our results are in general agree-
ment with the previous calculations [3,4], but there are
three important differences.
(A) Our calculations reveal no significant charge transfer
from La to Ni which is in agreement with the experimen-
tal data [20]: each La atom loses about 0.457 electrons,
each NiI atom gets about 0.011 electrons, each NiII atom
gets about 0.145 electrons. But the calculations of Malik
et al. [3] show a charge transfer of 1.5 electrons from La
to Ni. Gupta did not give this information [4].
(B) Our results show that the La atom has 2.53 5d elec-
trons hybridized with valence electrons of Ni. The La 5d
electrons have a contribution of 10% to the DOS at EF ,
and locate mostly near the Fermi level (in about 1 eV of
energy region, see Fig. 2a). While the results of Gupta
show that the contribution of lanthanum d states at EF

is almost nil [4].
(C) In our calculations, both majority-spin and minority-
spin Ni 3d subbands are not fully filled which is in agree-
ment with experiments. Whereas the calculations of Malik
show an almost filled minority-spin band [3].

The Mulliken population analyses show 1 µB spin mag-
netic moment per formula unit: 0.221 µB for La, 0.069 µB

for each NiI, 0.213 µB for each NiII, and all moments are
parallel. Thus, LaNi5 is a weak ferromagnet. The results
of Malik are similar but each LaNi5 cell has spin mag-
netic moment of 0.69 µB which is almost entirely due to
the nickel [3]. No magnetic information has been given by
Gupta’s calculations [4]. However, all calculations above
conflict with experimental data: LaNi5 is reported to be
an almost ferromagnetic Stoner enhanced Pauli paramag-
net [24,25]. A possible reason is that the neighbor LaNi5
cell may have opposite spin magnetic moment.

Finally, it may be worth discussing two points: For
LaNi5, why are the outcomes of the SCCE calculation and
those of band structure calculations different? Which one
is better?

Because the questions concern several fundamental
concepts, we give step-by-step discussions.
(I) In the viewpoint of physics, the symmetry and distri-
bution region of a single electron can be different from
that of system Hamiltonian. First, the experiments have
shown that a crystal can contain both periodic quasi-free
electrons and non-periodic localized electrons. Second, in
a many-electron Schrödinger equation

HΨG(X1, · · · , XN ) = EGΨG(X1, · · · , XN ), (9)

the symmetry and distribution region of the total Hamil-
tonian H put restrictions only on the total wave function
ΨG(X1, · · · , XN ). It does not require that a single electron
must have the same symmetry and distribution region. Fi-
nally, the density functional theory concerns only the total
electronic density and energy of a many-electron system.
When Kohn and Sham introduce the non-interacting elec-
tron system from the viewpoint of total energy, they only

assume that the non-interacting and interacting systems
have the same ground-state charge density. So in equa-
tion (1), there is no reason to require that the symmetry
and distribution region of every |φσ

n(r)|2 must be the same
as that of ρ(r).

(II) From the viewpoint of mathematics, the symmetry
and distribution region of a single |φσ

n(r)|2 in equations (1)
and (5) can be different from that of system ρ(r). As-
sume the Exc[ρ] to be exact, so that equation (1) is ex-
act. However, the variation of function (1) is exact only if
the trial one-electron wave function φσ

n(r) is unrestricted.
This means that there are two requirements in solving
the Kohn-Sham equation (5): (i) φσ

n(r) must be expanded
by a complete set of infinite number of basis functions.
(ii) φσ

n(r) can have any kind of boundary condition, i.e.,
a single |φσ

n(r)|2 can have any symmetry and distribution
region (so it can be different from that of system ρ(r)).
The reason for the requirement (ii) is simple: Any func-
tion can be expanded by a complete set of infinite number
of basis functions. But a φσ

n(r), expanded by a complete
set of infinite number of basis functions, is restricted if
it is required to satisfy a certain boundary condition. If
the requirements (i) and (ii) were satisfied, the variation
of function (1) would give a unique set of {φσ

n(r)} cor-
responding to a unique correct ρ(r). So the variation of
function (1) with respect to φσ∗

n (r) would be equivalent
to the variation with respect to ρ(r). Every real electron
could be well described by a φσ

n(r) no matter what kind
is the real electron. In this sense, the concept of “non-
interacting electron system” is no longer important. As
an example, consider a periodic crystal. If the crystal con-
tains only quasi-free electrons, the {φσ

n(r)} would be Bloch
functions. If the crystal contains only localized electrons,
all φσ

n(r) would be localized. If the crystal contains both
quasi-free and localized electrons, the {φσ

n(r)} would con-
tain both Bloch functions and localized functions.

(III) Errors in actual calculations. To get actual solutions
of equation (5), φσ

n(r) can only be expanded into a set
of finite number of basis functions, and satisfy a certain
boundary condition. So the trial one-electron wave func-
tion φσ

n(r) is restricted. Many different sets of {φσ
n(r)} can

now be used to get approximate ρ(r). The variation with
respect to φσ∗

n (r) is not equivalent to the variation with
respect to the true electronic density. When one kind of
{φσ

n(r)} is chosen, it means that a kind of non-interacting
electron is used to describe the real system approximately.
This causes two kinds of errors: (i) The calculated EG

and ρ(r) will deviate from the true total energy and elec-
tronic density of the real system, respectively. (ii) A single
|φσ

n(r)|2, and its eigenvalue εσ
n, will deviate from the prob-

ability distribution and energy of a real electron, respec-
tively. The error (ii) can be understood as follows: For a
given boundary condition, equation (5) has a unique set
of {φσ

n(r), εσ
n}. If one φσ

n(r) is poor for describing a real
electron, the kinetic energy of the non-interacting electron
represented by the φσ

n(r) will be notably different from
that of the real electron according to the equation (4).
So the eigenstate represented by the φσ

n(r) will notably
deviate from the state of the real electron.
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(IV) Boundary conditions and the symmetry of effective
one-electron Hamiltonian. Indicating with H ′

a(r) the effec-
tive one-electron Hamiltonian containing boundary con-
ditions in equation (5), and with Ha(r) the same but
without boundary condition, the symmetries of H ′

a(r) and
Ha(r) can be either the same or different because there
are many physically reasonable boundary conditions. For
a crystal, assume that the Ha(r) has the translation sym-
metry of the crystal. Apply a translation operator to equa-
tion (5),

T̂RH ′
a(r)φσ

n(r) = T̂Rεσ
nφσ

n(r). (10)

(i) Band structure calculation. Every φσ
n(r) is assumed

to spread over the whole space and satisfies the peri-
odic boundary condition. So the H ′

a(r) and Ha(r) have
the same translation symmetry, and equation (10) be-
comes H ′

a(r)T̂Rφσ
n(r) = εσ

nT̂Rφσ
n(r). This means that

T̂R commutes with H ′
a(r), and both T̂Rφσ

n(r) and φσ
n(r)

are eigenfunctions having the same eigenvalue εσ
n. The

φσ
n(r) can be shown to be Bloch functions, and a single

|φσ
n(r)|2 and ρ(r) have the same symmetry and distribu-

tion region. This is the Bloch theorem. (ii) The SCCE
calculation. The {φσ

n(r)} are assumed to localize in k
embedded-cluster regions, and satisfy k special bound-
ary conditions (7) and (8). So the H ′

a(r) has no transla-
tion symmetry of Ha(r), equation (10) can be written as
[T̂RH ′

a(r)]T̂Rφσ
n(r) = εσ

nT̂Rφσ
n(r). Now the T̂RH ′

a(r) and
H ′

a(r) are effective one-electron Hamiltonians acting on
two different embedded-clusters, and T̂Rφσ

n(r) and φσ
n(r)

are eigenfunctions localized in two different embedded-
cluster regions but related to the same eigenvalue εσ

n. The
symmetry and distribution region of a single |φσ

n(r)|2 are
different from that of ρ(r).

(V) It is easy to show that the atomic inner electrons,
which are almost absolutely localized (this means the
overlaps between the electrons of neighboring atoms
are zero), can be well described by φσ

n(r), used in free
cluster calculation, or in the SCCE calculation. A similar
conclusion is valid for band structure calculation [33]. So
it is enough to discuss only valence electrons which result
in the most important effects on the system properties. In
band structure calculations, the trial one-electron wave
functions φσ

n(r) are spread Bloch functions which are only
good for describing real quasi-free valence electrons. While
in the SCCE calculations, the localized trial one-electron
wave functions are good for describing real localized
valence electrons. In this sense, the band structure
calculation is the best for the systems containing quasi-
free valence electrons; while the SCCE calculation is the
best for the systems containing localized valence electrons.

Conclusion: It is the difference of the one-electron
wave functions that leads to the different outcomes. For
LaNi5, the Ni 3 d and La 5d electrons are well localized,
and the valence bands are mainly dominated by the Ni
3d electrons. These localized d electrons can be best
described by localized φσ

n(r) in the SCCE calculations.

Fig. 3. The embedded-cluster of (LaNi5H7)2.

4 Results of LaNi5H7

The elastic neutron scattering experiments, performed in-
dependently by two groups using different samples and
different methods [26,27], have reached similar conclu-
sions: the structure of β-LaNi5H7 can be described by
the P63mc non-centrosymmetric space group in which the
six-fold c axis of the CaCu5 structure has become a 63

screw axis because of the ordering of the hydrogen atoms
in the planes perpendicular to the c axis. Both results in-
dicate a reduction of symmetry and a doubling of the size
of the hexagonal unit cell along the c axis. However, the
structural models given by two groups are quite differ-
ent in detail: (1) Reference [26]. Along the c axis, La and
Ni atoms have coordinates of 0, 0.25, 0.5 or 0.75 which
mean no displacement, while none of the H atoms have
such coordinates. Six from fourteen H atoms have two
equal-opportunity positions which are very close. (2) Ref-
erence [27]. Along the c axis, Ni atoms have displacements,
while the La atoms, and twelve from fourteen H atoms,
have coordinates of 0, 0.25, 0.5 or 0.75. All the H atoms
have definite positions. We chose the structural model
given in reference [26]. The embedded-cluster (LaNi5H7)2
is shown in Figure 3. Table 1 gives the fractional coor-
dinates of all 26 atoms in the cluster, where the coordi-
nates of six H atoms (atoms 8, 9, 10, 21, 22, 23) are taken
as the averages over the coordinates of two close equal-
opportunity positions. We refer the reader to the exper-
imental papers [26,27] for further details concerning the
structure.

The cluster (LaNi5H7)2 is surrounded by 676 atoms to
simulate the β-phase LaNi5H7. The lattice constants used
in our calculation are ao = 5.428 Å and co = 8.627 Å,
which indicate a large lattice expansion compared with
LaNi5 (∆a/ao ≈ ∆c/co ≈ 8%) [27]. The Gaussian bases
of Ni and La are the same as that in the LaNi5 cluster.
The optimized Gaussian basis set of hydrogen is taken to
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(a) (b)

(c) (d)

Fig. 4. Density of states of classified spin-up electrons of LaNi5H7. Units of the DOS are states of per electron-volt per
(LaNi5H7)2 cell. (a) H-s, Ni-s and Ni-p electrons; (b) La valence electrons; (c) Ni-d electrons; (d) Total spin-up electrons.

be 10s [16]. The total number of Gaussian bases of the
embedded-cluster (LaNi5H7)2 is 878. There are 2096679
grid points used for the numerical calculation of Vxc. After
several trial calculations, the optimum values of core radii
of surrounding La, Ni and H atoms are: RLa = 1.3499 a.u.,
RNi = 0.6519 a.u. and RH = 0.5932 a.u. The total num-
ber of cluster-electrons remaining in the core regions of
676 surrounding atoms are 0.0014, which shows that the
special boundary condition (7) is well satisfied. Based on
the Hellmann-Feynman theory, the total forces acting on
each atomic nucleus are calculated. In principle, the total
force acting on a nucleus in equilibrium should be zero. In
the SCCE calculations, and free-cluster calculations, how-
ever, the charge fitting technique is used, which is designed
to produce minimum error in electrostatic energy but not
charge density [28]. So even for an atom in equilibrium,
the calculated total force is not exactly zero but a small

value. The last column of Table 1 gives the total forces
acting on atomic nuclei (per nuclear charge). They are
reasonably small, indicating the atoms are in equilibrium.

There is no spin magnetic moment for the cluster
(LaNi5H7)2. Figure 4 shows the DOS of spin-up H-s, Ni-s,
Ni-p, La (−s, −p, −d), Ni-d and total electrons. The DOS
curves of spin down electrons are the same. Each single
level has been broadened by a Gaussian function with a
FWHM of 1 eV (s electrons), 0.5 eV (p electrons) and
0.3 eV (d electrons), respectively. The contribution of La-
s and La-p electrons are negligible. The Fermi level of
LaNi5H7 is EF = +0.047 eV, which falls in a rising por-
tion of the DOS of the lanthanum valence electrons. The
total DOS at EF in the hydride remains large, as observed
in LaNi5. The electronic specific-heat coefficient γ is eval-
uated to be 2.33×10−2 J (mole LaNi5H7)−1 K−2, which is
smaller than that of LaNi5. This agrees with the measured
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Table 1. Atoms in embedded-cluster (LaNi5H7)2.

Fractional coordinates Total force
No. Atom x y z per nuclear

(ao) (ao) (co) charge (a.u.)
1 La 0 0 0 0.0807
2 Ni 2/3 1/3 0 0.1807
3 Ni 1/3 2/3 0 0.1123
4 Ni 0 1/2 1/4 0.0588
5 Ni 1/2 0 1/4 0.0970
6 Ni 1/2 1/2 1/4 0.0385
7 H 2/3 1/3 0.309 0.0831
8 H 0.147 0.294 0.275 0.0964
9 H 0.706 0.853 0.275 0.0748
10 H 0.147 0.853 0.275 0.0655
11 H 0 1/2 0.060 0.1039
12 H 1/2 0 0.060 0.0843
13 H 1/2 1/2 0.060 0.0267
14 La 0 0 1/2 0.0976
15 Ni 2/3 1/3 1/2 0.0426
16 Ni 1/3 2/3 1/2 0.0672
17 Ni 0 1/2 3/4 0.1114
18 Ni 1/2 0 3/4 0.0770
19 Ni 1/2 1/2 3/4 0.0525
20 H 1/3 2/3 0.809 0.0802
21 H 0.294 0.147 0.775 0.0704
22 H 0.853 0.706 0.775 0.0893
23 H 0.853 0.147 0.775 0.0716
24 H 0 1/2 0.560 0.0775
25 H 1/2 0 0.560 0.0520
26 H 1/2 1/2 0.560 0.0730

value. Ohlendorf and Flotow [23] have observed a small
decrease from γ = 4.26 × 10−2 J (mole LaNi5)−1 K−2 to
γ = 4.04× 10−2 J (mole LaNi5H6.3)−1 K−2. We observe a
small narrowing of the nickel d bands from about 3.0 eV
(FWHM) in LaNi5 to about 2.7 eV (FWHM) in LaNi5H7.
This is due in part to the large lattice expansion observed
upon hydrogenation and also to the modification of the
nickel d bands due to the Ni-H interaction. Our results
are in general agreement with the reference [4]. The fol-
lowing characteristics deserve our extra attention.
(A) The major contribution to the valence bands is made
by the nickel 3d electrons (74.5%) and the hydrogen 1s
electrons (13.9%). The contribution of lanthanum 5d elec-
trons is less than 3.1%. However, the La 5d electrons lo-
cate mostly near the Fermi level and make a contribution
of 14% to the DOS at EF .
(B) The hydrogen 1s electrons are mainly distributed in
the energy region of −2 ∼ −8 eV, where their DOS is
comparable to that of nickel valence electrons. The DOS
of lanthanum 5d electrons, however, is almost zero in this
energy region. This indicates that in LaNi5H7, the hy-
drogen 1s electrons hybridize mainly with nickel valence
electrons. In other words, the hydrogen atoms are mainly
combined with nickel atoms.
(C) There is a charge transfer from lanthanum to hydro-
gen: each La atom loses 1.16 electrons, each Ni atom loses
0.05 electrons, and each H atom gets 0.20 electrons. The
total number of La electrons in the valence band is 1.83.

(D) If the Exc in equation (1) is considered to be cor-
rect, according to Slater and Janak [30–32], the absolute
value of an eigenvalue (including the Fermi level) is equal
to the amount of energy required to remove an electron
from the orbital, with the error being of the second order
in the derivative of the total energy. The transition-state
method [30–32] will reduce the error to the third order.
Our results show that for LaNi5H7, EF = +0.047 eV,
which is unusually high, and is about 5.172 eV higher
than that of LaNi5. This means that the LaNi5H7 is less
stabler than LaNi5, perhaps being metastable. The re-
sult of transition-state method shows 1.92 eV of ioniza-
tion potential of the orbital at EF . Because the surround-
ing charge density ρ2 is fixed and the electron rearrange-
ment in embedded-cluster (LaNi5H7)2 is limited by ρ2

in the transition-state method of the SCCE calculation,
the ionization potential obtained above is higher than the
real value (the limitation of rearrangement raises the en-
ergy) [5]. The real ionization potential is estimated to be
about 1 eV. This shows that the electron does not easily
leave LaNi5H7. It may be easier for hydrogen atoms to
escape.

Because the environmental atoms and the embedded-
clusters in two calculations are different, the total energy
of the embedded-clusters LaNi5 and (LaNi5H7)2 are in-
comparable. Thus we are unable to explain hydrogena-
tion of LaNi5 by comparing the binding energies. How-
ever, compare the results of LaNi5 with that of LaNi5H7,
there are following important characteristics: (i) In both
LaNi5 and its hydride LaNi5H7, the lanthanum 5d elec-
trons are well localized and are located nearby the Fermi
level. (ii) LaNi5 has no significant charge transfer from
La to Ni, while its hydride LaNi5H7 has a charge trans-
fer of 1.16 electrons from lanthanum to hydrogen. (iii) In
LaNi5H7, the hydrogen atoms are mainly combined with
nickel atoms to form hybridized orbitals in the energy re-
gions lower than that of lanthanum 5d electrons. Based
on this, we propose the following feature of hydrogenation
of LaNi5: It is easy for hydrogens to take off some local-
ized La 5d electrons near the Fermi level, and combine
with nickel to form hybridized orbitals in lower energy re-
gions. This process is in favor of energy, and forces the
lattice expansion until the Fermi level rises to zero. The
lanthanum 5d electrons act as a catalyst in the hydrogena-
tion of LaNi5. It is interesting to compare this with our
previous calculation [8] which reveals that hydrogen can
induce vacancy formation in pure Ni metal as suggested
by the experiment of Fukai and Okuma [29]. A vacancy
can contain six hydrogen atoms which are along the octa-
hedral directions displaced by ao/2 (ao being the lattice
constant of pure Ni) from the vacancy center.

5 Conclusions

Using the self-consistent cluster-embedding method, the
electronic structures of LaNi5 and its hydride LaNi5H7 are
obtained by the first principle, all-electron, full-potential
calculations. The calculated width of nickel d bands and
electronic specific-heat coefficients are in good agreement
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with the experimental data. It is found that in both mate-
rials, the contribution of La 5d electrons to DOS of valence
bands are small, but almost all of La 5d electrons locate
near the Fermi levels. The Fermi level of LaNi5H7 is close
to zero, which is 5.172 eV higher than that of LaNi5. For
LaNi5, there is no significant charge transfer from La to
Ni. For LaNi5H7, however, the calculations reveal a charge
transfer of 1.16 electrons from La to H. The hydrogens
are mainly combined with the Ni in the energy regions far
below the Fermi level. From this, an explanation of hy-
drogenation of LaNi5 is proposed: It is easy for hydrogens
to take off some localized La 5d electrons near the Fermi
level, and combine with Ni to form hybridized orbitals in
lower energy regions. This process is in favor of energy,
and forces a lattice expansion until the Fermi level rises
to zero.

This work was supported by the Foundation of Academy of
Engineering and Physics of China under Grant No. 98030910.
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